login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077984
Expansion of 1/(1+2*x-2*x^2+2*x^3).
1
1, -2, 6, -18, 52, -152, 444, -1296, 3784, -11048, 32256, -94176, 274960, -802784, 2343840, -6843168, 19979584, -58333184, 170311872, -497249280, 1451788672, -4238699648, 12375475200, -36131927040, 105492203776, -307999212032, 899246685696, -2625476203008, 7665444201472
OFFSET
0,2
FORMULA
a(n) = -2*a(n-1) + 2*a(n-2) - 2*a(n-3).
a(n) is the nearest integer to c*d^n where c=0.7166689603... satisfies 67*c^3 - 67*c^2 + 15*c - 1 = 0 and d=-2.9196395658... satisfies d^3 + 2*d^2 - 2*d + 2 = 0.
a(n) = (-1)^n * A077835(n). - R. J. Mathar, Aug 07 2015
MATHEMATICA
CoefficientList[Series[1/(1+2x-2x^2+2x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{-2, 2, -2}, {1, -2, 6}, 30] (* Harvey P. Dale, Jun 17 2014 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1/(1+2*x-2*x^2+2*x^3)) \\ G. C. Greubel, Jun 25 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1+2*x-2*x^2+2*x^3) )); // G. C. Greubel, Jun 25 2019
(Sage) (1/(1+2*x-2*x^2+2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
(GAP) a:=[1, -2, 6];; for n in [4..30] do a[n]:=-2*a[n-1]+2*a[n-2] - 2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
CROSSREFS
Cf. A077835.
Sequence in context: A156989 A077935 A077835 * A052979 A005507 A252822
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved