login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077986
Expansion of 1/(1 + 2*x - x^2 + x^3).
3
1, -2, 5, -13, 33, -84, 214, -545, 1388, -3535, 9003, -22929, 58396, -148724, 378773, -964666, 2456829, -6257097, 15935689, -40585304, 103363394, -263247781, 670444260, -1707499695, 4348691431, -11075326817, 28206844760, -71837707768, 182957587113, -465959726754
OFFSET
0,2
FORMULA
a(n) = (-1)^n * A077939(n). - Joerg Arndt, Sep 30 2012
a(n) = -2*a(n-1) + a(n-2) - a(n-3), with a(0)=1, a(1)=-2, a(2)=5. - Harvey P. Dale, Feb 14 2014
MAPLE
m:=30; S:=series(1/(1+2*x-x^2+x^3), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 26 2020
MATHEMATICA
CoefficientList[Series[1/(1+2x-x^2+x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[ {-2, 1, -1}, {1, -2, 5}, 30] (* Harvey P. Dale, Feb 14 2014 *)
b[n_]:= b[n]= If[n<3, n, 2*b[n-1] +b[n-2] +b[n-3]]; Table[(-1)^n*b[n+1], {n, 0, 30}] (* Rigoberto Florez, Jan 23 2020 *)
PROG
(PARI) Vec(1/(1+2*x-x^2+x^3)+O(x^30)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1+2*x-x^2+x^3) )); // G. C. Greubel, Jun 25 2019
(Sage)
def A077986_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return ( 1/(1+2*x-x^2+x^3) ).list()
A077986_list(30) # G. C. Greubel, Jun 25 2019
(GAP) a:=[1, -2, 5];; for n in [4..30] do a[n]:=-2*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
CROSSREFS
Cf. A077939.
Sequence in context: A120925 A086588 A077939 * A007020 A080888 A052988
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved