login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080888
Number of compositions into Fibonacci numbers (1 counted as two distinct Fibonacci numbers).
3
1, 2, 5, 13, 33, 85, 218, 559, 1435, 3682, 9448, 24244, 62210, 159633, 409622, 1051099, 2697145, 6920936, 17759282, 45570729, 116935544, 300059313, 769959141, 1975732973, 5069776531, 13009163899, 33381815615, 85658511370, 219801722429, 564016306267
OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2443 (first 301 terms from T. D. Noe)
FORMULA
G.f.: 1/(1-Sum_{k>0} x^Fibonacci(k)).
a(n) ~ c * d^n, where d=2.5660231413698319379867000009313373339800958659676443846860312096..., c=0.7633701399876743973524738479037760170533154734693438061127686049... - Vaclav Kotesovec, May 01 2014
EXAMPLE
a(2) = 5 since 2 = 1+1 = 1+1' = 1'+1 = 1'+1'.
MAPLE
a:= proc(n) option remember; local r, f;
if n=0 then 1 else r, f:= 0, [0, 1];
while f[2] <= n do r:= r+a(n-f[2]);
f:= [f[2], f[1]+f[2]]
od; r
fi
end:
seq(a(n), n=0..35); # Alois P. Heinz, Feb 20 2017
MATHEMATICA
a[n_] := a[n] = Module[{r, f}, If[n == 0, 1, {r, f} = {0, {0, 1}}; While[f[[2]] <= n, r = r + a[n - f[[2]]]; f = {f[[2]], f[[1]] + f[[2]]}]; r]];
a /@ Range[0, 35] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A077939 A077986 A007020 * A052988 A001429 A148288
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Mar 30 2003
STATUS
approved