Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Oct 27 2023 19:33:26
%S 1,2,5,13,33,85,218,559,1435,3682,9448,24244,62210,159633,409622,
%T 1051099,2697145,6920936,17759282,45570729,116935544,300059313,
%U 769959141,1975732973,5069776531,13009163899,33381815615,85658511370,219801722429,564016306267
%N Number of compositions into Fibonacci numbers (1 counted as two distinct Fibonacci numbers).
%H Alois P. Heinz, <a href="/A080888/b080888.txt">Table of n, a(n) for n = 0..2443</a> (first 301 terms from T. D. Noe)
%F G.f.: 1/(1-Sum_{k>0} x^Fibonacci(k)).
%F a(n) ~ c * d^n, where d=2.5660231413698319379867000009313373339800958659676443846860312096..., c=0.7633701399876743973524738479037760170533154734693438061127686049... - _Vaclav Kotesovec_, May 01 2014
%e a(2) = 5 since 2 = 1+1 = 1+1' = 1'+1 = 1'+1'.
%p a:= proc(n) option remember; local r, f;
%p if n=0 then 1 else r, f:= 0, [0, 1];
%p while f[2] <= n do r:= r+a(n-f[2]);
%p f:= [f[2], f[1]+f[2]]
%p od; r
%p fi
%p end:
%p seq(a(n), n=0..35); # _Alois P. Heinz_, Feb 20 2017
%t a[n_] := a[n] = Module[{r, f}, If[n == 0, 1, {r, f} = {0, {0, 1}}; While[f[[2]] <= n, r = r + a[n - f[[2]]]; f = {f[[2]], f[[1]] + f[[2]]}]; r]];
%t a /@ Range[0, 35] (* _Jean-François Alcover_, Nov 07 2020, after _Alois P. Heinz_ *)
%Y Cf. A000045, A076739.
%K nonn
%O 0,2
%A _Vladeta Jovovic_, Mar 30 2003