Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 08 2022 08:45:08
%S 1,-2,6,-18,52,-152,444,-1296,3784,-11048,32256,-94176,274960,-802784,
%T 2343840,-6843168,19979584,-58333184,170311872,-497249280,1451788672,
%U -4238699648,12375475200,-36131927040,105492203776,-307999212032,899246685696,-2625476203008,7665444201472
%N Expansion of 1/(1+2*x-2*x^2+2*x^3).
%H G. C. Greubel, <a href="/A077984/b077984.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-2, 2, -2).
%F a(n) = -2*a(n-1) + 2*a(n-2) - 2*a(n-3).
%F a(n) is the nearest integer to c*d^n where c=0.7166689603... satisfies 67*c^3 - 67*c^2 + 15*c - 1 = 0 and d=-2.9196395658... satisfies d^3 + 2*d^2 - 2*d + 2 = 0.
%F a(n) = (-1)^n * A077835(n). - _R. J. Mathar_, Aug 07 2015
%t CoefficientList[Series[1/(1+2x-2x^2+2x^3),{x,0,30}],x] (* or *) LinearRecurrence[{-2,2,-2},{1,-2,6},30] (* _Harvey P. Dale_, Jun 17 2014 *)
%o (PARI) my(x='x+O('x^30)); Vec(1/(1+2*x-2*x^2+2*x^3)) \\ _G. C. Greubel_, Jun 25 2019
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1+2*x-2*x^2+2*x^3) )); // _G. C. Greubel_, Jun 25 2019
%o (Sage) (1/(1+2*x-2*x^2+2*x^3)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Jun 25 2019
%o (GAP) a:=[1,-2,6];; for n in [4..30] do a[n]:=-2*a[n-1]+2*a[n-2] - 2*a[n-3]; od; a; # _G. C. Greubel_, Jun 25 2019
%Y Cf. A077835.
%K sign,easy
%O 0,2
%A _N. J. A. Sloane_, Nov 17 2002