login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077937 Expansion of 1/(1-2*x-2*x^2+2*x^3). 9
1, 2, 6, 14, 36, 88, 220, 544, 1352, 3352, 8320, 20640, 51216, 127072, 315296, 782304, 1941056, 4816128, 11949760, 29649664, 73566592, 182532992, 452899840, 1123732480, 2788198656, 6918062592, 17165057536, 42589842944, 105673675776, 262196922368 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Form the graph with matrix A = [1,1,1,1; 1,0,0,0; 1,0,0,0; 1,0,0,1]. Then the sequence 0, 1, 2, 6, ... counts walks of length n between the degree 5 vertex and the degree 3 vertex. - Paul Barry, Oct 02 2004

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,2,-2).

FORMULA

a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) with a(0) = 1, a(1) = 2, and a(3) = 8. - G. C. Greubel, May 02 2022

MATHEMATICA

LinearRecurrence[{2, 2, -2}, {1, 2, 6}, 50] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)

CoefficientList[Series[1/(1-2*x-2*x^2+2*x^3), {x, 0, 40}], x] (* Harvey P. Dale, Dec 05 2018 *)

PROG

(PARI) Vec(1/(1-2*x-2*x^2+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012

(Magma) [n le 3 select Factorial(n) else 2*(Self(n-1) +Self(n-2) -Self(n-3)): n in [1..51]]; # G. C. Greubel, May 02 2022

(SageMath)

def A077937_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P( 1/(1-2*x-2*x^2+2*x^3) ).list()

A077937_list(50) # G. C. Greubel, May 02 2022

CROSSREFS

Cf. A052528, A052987, A107300.

Sequence in context: A245560 A175654 A017922 * A077981 A006653 A171924

Adjacent sequences:  A077934 A077935 A077936 * A077938 A077939 A077940

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 17:54 EDT 2022. Contains 356122 sequences. (Running on oeis4.)