login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077937
Expansion of 1/(1-2*x-2*x^2+2*x^3).
9
1, 2, 6, 14, 36, 88, 220, 544, 1352, 3352, 8320, 20640, 51216, 127072, 315296, 782304, 1941056, 4816128, 11949760, 29649664, 73566592, 182532992, 452899840, 1123732480, 2788198656, 6918062592, 17165057536, 42589842944, 105673675776, 262196922368
OFFSET
0,2
COMMENTS
Form the graph with matrix A = [1,1,1,1; 1,0,0,0; 1,0,0,0; 1,0,0,1]. Then the sequence 0, 1, 2, 6, ... counts walks of length n between the degree 5 vertex and the degree 3 vertex. - Paul Barry, Oct 02 2004
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) with a(0) = 1, a(1) = 2, and a(3) = 8. - G. C. Greubel, May 02 2022
MATHEMATICA
LinearRecurrence[{2, 2, -2}, {1, 2, 6}, 50] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
CoefficientList[Series[1/(1-2*x-2*x^2+2*x^3), {x, 0, 40}], x] (* Harvey P. Dale, Dec 05 2018 *)
PROG
(PARI) Vec(1/(1-2*x-2*x^2+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
(Magma) [n le 3 select Factorial(n) else 2*(Self(n-1) +Self(n-2) -Self(n-3)): n in [1..51]]; # G. C. Greubel, May 02 2022
(SageMath)
def A077937_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-2*x^2+2*x^3) ).list()
A077937_list(50) # G. C. Greubel, May 02 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved