login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245560
Row sums of triangle in A144480.
1
1, 2, 6, 14, 36, 82, 196, 436, 1000, 2186, 4884, 10540, 23128, 49428, 107048, 227048, 486864, 1026394, 2183860, 4581244, 9686776, 20237372, 42571896, 88632664, 185653936, 385380932, 804316296, 1665340856, 3464899440, 7158117736, 14853106384
OFFSET
0,2
FORMULA
From N. J. A. Sloane, Aug 07 2014: if n is even, a(n) = (n+2)*2^(n-1)-(n/2)*binomial(n,n/2) otherwise a(n) = (n+2)*2^(n-1)-((n+1)/4)*binomial(n+1,(n+1)/2). This follows easily from the definition.
MAPLE
f:=n->if (n mod 2) = 0 then (n+2)*2^(n-1)-(n/2)*binomial(n, n/2)
else (n+2)*2^(n-1)-((n+1)/4)*binomial(n+1, (n+1)/2); fi;
[seq(f(n), n=0..40)];
CROSSREFS
Cf. A144480.
Sequence in context: A362780 A323027 A110152 * A175654 A017922 A077937
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Oct 11 2008
EXTENSIONS
Edited with more terms by N. J. A. Sloane, Aug 07 2014
STATUS
approved