login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110152
G.f.: A(x) = Product_{n>=1} 1/(1 - 2^n*x^n)^(2/2^n).
5
1, 2, 6, 14, 36, 78, 192, 406, 942, 2018, 4512, 9450, 21178, 43950, 95532, 200398, 431356, 892518, 1917572, 3950614, 8410230, 17398466, 36648980, 75326754, 159199004, 326471706, 683028924, 1404145162, 2930071798, 5993625942
OFFSET
0,2
LINKS
FORMULA
G.f.: exp( Sum_{n>=1} 2*A090879(n)*x^n/n ), where A090879(n) = Sum_{d|n} d*2^(n-d). - Paul D. Hanna, Jan 05 2014
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 14*x^3 + 36*x^4 + 78*x^5 +...
where
A(x) = 1/((1-2*x) * (1-4*x^2)^(1/2) * (1-8*x^3)^(1/4) * (1-16*x^4)^(1/8) *...).
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[1/(1 - 2^k*x^k)^(2/2^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 18 2020 *)
PROG
(PARI) a(n)=polcoeff(prod(k=1, n, 1/(1-2^k*x^k+x*O(x^n))^(2/2^k)), n)
(PARI) A090879(n) = sumdiv(n, d, d*2^(n-d))
a(n)=local(A); A=exp(sum(k=1, n, 2*A090879(k)*x^k/k)+x*O(x^n)); polcoeff(A, n)
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 05 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 14 2005
STATUS
approved