The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110152 G.f.: A(x) = Product_{n>=1} 1/(1 - 2^n*x^n)^(2/2^n). 5
 1, 2, 6, 14, 36, 78, 192, 406, 942, 2018, 4512, 9450, 21178, 43950, 95532, 200398, 431356, 892518, 1917572, 3950614, 8410230, 17398466, 36648980, 75326754, 159199004, 326471706, 683028924, 1404145162, 2930071798, 5993625942 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 FORMULA G.f.: exp( Sum_{n>=1} 2*A090879(n)*x^n/n ), where A090879(n) = Sum_{d|n} d*2^(n-d). - Paul D. Hanna, Jan 05 2014 EXAMPLE G.f.: A(x) = 1 + 2*x + 6*x^2 + 14*x^3 + 36*x^4 + 78*x^5 +... where A(x) = 1/((1-2*x) * (1-4*x^2)^(1/2) * (1-8*x^3)^(1/4) * (1-16*x^4)^(1/8) *...). MATHEMATICA nmax = 30; CoefficientList[Series[Product[1/(1 - 2^k*x^k)^(2/2^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 18 2020 *) PROG (PARI) a(n)=polcoeff(prod(k=1, n, 1/(1-2^k*x^k+x*O(x^n))^(2/2^k)), n) (PARI) A090879(n) = sumdiv(n, d, d*2^(n-d)) a(n)=local(A); A=exp(sum(k=1, n, 2*A090879(k)*x^k/k)+x*O(x^n)); polcoeff(A, n) for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 05 2014 CROSSREFS Cf. A110153, A110154, A110155, A110156. Sequence in context: A025257 A283438 A323027 * A245560 A175654 A017922 Adjacent sequences:  A110149 A110150 A110151 * A110153 A110154 A110155 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 14 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 16:58 EDT 2022. Contains 356122 sequences. (Running on oeis4.)