login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x) = Product_{n>=1} 1/(1 - 2^n*x^n)^(2/2^n).
5

%I #10 Oct 18 2020 07:50:29

%S 1,2,6,14,36,78,192,406,942,2018,4512,9450,21178,43950,95532,200398,

%T 431356,892518,1917572,3950614,8410230,17398466,36648980,75326754,

%U 159199004,326471706,683028924,1404145162,2930071798,5993625942

%N G.f.: A(x) = Product_{n>=1} 1/(1 - 2^n*x^n)^(2/2^n).

%H Vaclav Kotesovec, <a href="/A110152/b110152.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: exp( Sum_{n>=1} 2*A090879(n)*x^n/n ), where A090879(n) = Sum_{d|n} d*2^(n-d). - _Paul D. Hanna_, Jan 05 2014

%e G.f.: A(x) = 1 + 2*x + 6*x^2 + 14*x^3 + 36*x^4 + 78*x^5 +...

%e where

%e A(x) = 1/((1-2*x) * (1-4*x^2)^(1/2) * (1-8*x^3)^(1/4) * (1-16*x^4)^(1/8) *...).

%t nmax = 30; CoefficientList[Series[Product[1/(1 - 2^k*x^k)^(2/2^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 18 2020 *)

%o (PARI) a(n)=polcoeff(prod(k=1,n,1/(1-2^k*x^k+x*O(x^n))^(2/2^k)),n)

%o (PARI) A090879(n) = sumdiv(n,d, d*2^(n-d))

%o a(n)=local(A);A=exp(sum(k=1,n,2*A090879(k)*x^k/k)+x*O(x^n));polcoeff(A,n)

%o for(n=0,30,print1(a(n),", ")) \\ _Paul D. Hanna_, Jan 05 2014

%Y Cf. A110153, A110154, A110155, A110156.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jul 14 2005