The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077940 Expansion of 1/(1-2*x+2*x^3). 4
 1, 2, 4, 6, 8, 8, 4, -8, -32, -72, -128, -192, -240, -224, -64, 352, 1152, 2432, 4160, 6016, 7168, 6016, 0, -14336, -40704, -81408, -134144, -186880, -210944, -153600, 66560, 555008, 1417216, 2701312, 4292608, 5750784, 6098944, 3612672, -4276224, -20750336, -48726016, -88899584 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,0,-2). FORMULA a(n) = (-1)^n * A077988(n). - R. J. Mathar, Feb 04 2014 MATHEMATICA LinearRecurrence[{2, 0, -2}, {1, 2, 4}, 50] (* or *) CoefficientList[Series[ 1/(1-2*x+2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 26 2019 *) PROG (PARI) my(x='x+O('x^50)); Vec(1/(1-2*x+2*x^3)) \\ G. C. Greubel, Jun 26 2019 (Magma) R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-2*x+2*x^3) )); // G. C. Greubel, Jun 26 2019 (Sage) (1/(1-2*x+2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 26 2019 (GAP) a:=[1, 2, 4];; for n in [4..50] do a[n]:=2*(a[n-1]-a[n-3]); od; a; # G. C. Greubel, Jun 26 2019 CROSSREFS Cf. A077988. Sequence in context: A295079 A237047 A021806 * A077988 A166880 A079088 Adjacent sequences: A077937 A077938 A077939 * A077941 A077942 A077943 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Nov 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 8 22:43 EDT 2024. Contains 375759 sequences. (Running on oeis4.)