login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077976 Expansion of 1/(1+x+x^2+2*x^3). 3
1, -1, 0, -1, 3, -2, 1, -5, 8, -5, 7, -18, 21, -17, 32, -57, 59, -66, 121, -173, 184, -253, 415, -530, 621, -921, 1360, -1681, 2163, -3202, 4401, -5525, 7528, -10805, 14327, -18578, 25861, -35937, 47232, -63017, 87659, -119106, 157481, -213693, 294424, -395693, 528655, -721810, 984541, -1320041 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (-1,-1,-2).

MATHEMATICA

LinearRecurrence[{-1, -1, -2}, {1, -1, 0}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2012 *)

PROG

(PARI) my(x='x+O('x^50)); Vec(1/(1+x+x^2+2*x^3)) \\ G. C. Greubel, Jun 25 2019

(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+x+x^2+2*x^3) )); // G. C. Greubel, Jun 25 2019

(Sage) (1/(1+x+x^2+2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019

(GAP) a:=[1, -1, 0];; for n in [4..50] do a[n]:=-a[n-1]-a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019

CROSSREFS

Partial sums give: A077909.

Sequence in context: A079628 A140287 A077951 * A021912 A114597 A199479

Adjacent sequences: A077973 A077974 A077975 * A077977 A077978 A077979

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 17:25 EST 2022. Contains 358668 sequences. (Running on oeis4.)