login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077974
Expansion of 1/(1+x+2*x^3).
3
1, -1, 1, -3, 5, -7, 13, -23, 37, -63, 109, -183, 309, -527, 893, -1511, 2565, -4351, 7373, -12503, 21205, -35951, 60957, -103367, 175269, -297183, 503917, -854455, 1448821, -2456655, 4165565, -7063207, 11976517, -20307647, 34434061, -58387095, 99002389, -167870511, 284644701
OFFSET
0,4
FORMULA
a(0)=1, a(1)=-1, a(2)=1, a(n)=a(n-1)-2*a(n-3). - Harvey P. Dale, Aug 29 2012
MATHEMATICA
CoefficientList[Series[1/(1+x+2*x^3), {x, 0, 45}], x] (* or *) LinearRecurrence[ {-1, 0, -2}, {1, -1, 1}, 45] (* Harvey P. Dale, Aug 29 2012 *)
PROG
(PARI) Vec(1/(1+x+2*x^3)+O(x^45)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 45); Coefficients(R!( 1/(1+x+2*x^3) )); // G. C. Greubel, Jun 25 2019
(Sage) (1/(1+x+2*x^3)).series(x, 45).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
(GAP) a:=[1, -1, 1];; for n in [4..45] do a[n]:=-a[n-1]-2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
CROSSREFS
Signed version of A077949.
Sequence in context: A127443 A003229 A077949 * A126273 A007658 A275175
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved