Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:45:08
%S 1,-1,1,-3,5,-7,13,-23,37,-63,109,-183,309,-527,893,-1511,2565,-4351,
%T 7373,-12503,21205,-35951,60957,-103367,175269,-297183,503917,-854455,
%U 1448821,-2456655,4165565,-7063207,11976517,-20307647,34434061,-58387095,99002389,-167870511,284644701
%N Expansion of 1/(1+x+2*x^3).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,0,-2).
%F a(0)=1, a(1)=-1, a(2)=1, a(n)=a(n-1)-2*a(n-3). - _Harvey P. Dale_, Aug 29 2012
%t CoefficientList[Series[1/(1+x+2*x^3),{x,0,45}],x] (* or *) LinearRecurrence[ {-1,0,-2},{1,-1,1},45] (* _Harvey P. Dale_, Aug 29 2012 *)
%o (PARI) Vec(1/(1+x+2*x^3)+O(x^45)) \\ _Charles R Greathouse IV_, Sep 26 2012
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 45); Coefficients(R!( 1/(1+x+2*x^3) )); // _G. C. Greubel_, Jun 25 2019
%o (Sage) (1/(1+x+2*x^3)).series(x, 45).coefficients(x, sparse=False) # _G. C. Greubel_, Jun 25 2019
%o (GAP) a:=[1,-1,1];; for n in [4..45] do a[n]:=-a[n-1]-2*a[n-3]; od; a; # _G. C. Greubel_, Jun 25 2019
%Y Signed version of A077949.
%K sign,easy
%O 0,4
%A _N. J. A. Sloane_, Nov 17 2002