login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077972
Expansion of 1/(1+x-x^2+2*x^3).
3
1, -1, 2, -5, 9, -18, 37, -73, 146, -293, 585, -1170, 2341, -4681, 9362, -18725, 37449, -74898, 149797, -299593, 599186, -1198373, 2396745, -4793490, 9586981, -19173961, 38347922, -76695845, 153391689, -306783378, 613566757, -1227133513, 2454267026, -4908534053, 9817068105
OFFSET
0,3
FORMULA
a(n) = (-1)^n * A077947(n).
G.f.: Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k+1 - x + 2*x^2 )/( x*(4*k+3 - x + 2*x^2 ) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 09 2013
MATHEMATICA
LinearRecurrence[{-1, 1, -2}, {1, -1, 2}, 40] (* or *) CoefficientList[ Series[1/(1+x-x^2+2*x^3), {x, 0, 40}], x] (* G. C. Greubel, Jun 24 2019 *)
PROG
(PARI) Vec(1/(1+x-x^2+2*x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 27 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1+x-x^2+2*x^3) )); // G. C. Greubel, Jun 24 2019
(Sage) (1/(1+x-x^2+2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 24 2019
(GAP) a:=[1, -1, 2];; for n in [4..40] do a[n]:=-a[n-1]+a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 24 2019
CROSSREFS
Cf. A077947.
Sequence in context: A068036 A364525 A077947 * A293354 A293329 A152546
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved