|
|
A003229
|
|
a(n) = a(n-1) + 2*a(n-3) with a(0)=a(1)=1, a(2)=3.
(Formerly M2419)
|
|
23
|
|
|
1, 1, 3, 5, 7, 13, 23, 37, 63, 109, 183, 309, 527, 893, 1511, 2565, 4351, 7373, 12503, 21205, 35951, 60957, 103367, 175269, 297183, 503917, 854455, 1448821, 2456655, 4165565, 7063207, 11976517, 20307647, 34434061, 58387095, 99002389
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Equals eigensequence of an infinite lower triangular matrix with 1's in the main diagonal, 0's in the subdiagonal and 2's in the subsubdiagonal. (the triangle in the lower section of A155761). - Gary W. Adamson, Jan 28 2009
The operation in the comment of Jan 28 2009 is equivalent to the INVERT transform of (1, 0, 2, 0, 0, 0, ...). - Gary W. Adamson, Jan 21 2017
For n>=1, a(n) equals the number of ternary words of length n-1 having at least 2 zeros between every two successive nonzero letters. - Milan Janjic, Mar 09 2015
|
|
REFERENCES
|
D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links below for an earlier version.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 9.
D. E. Daykin, Letter to N. J. A. Sloane, Dec 1973
D. E. Daykin, Letter to N. J. A. Sloane, Mar 1974
D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, page 1.
D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, page 2.
D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, page 3.
D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, page 4.
D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, reverse side of page 4.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 417
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Index entries for linear recurrences with constant coefficients, signature (1,0,2).
|
|
FORMULA
|
G.f.: (1+2*z^2)/(1-z-2*z^3). - Simon Plouffe in his 1992 dissertation
a(n) = A077949(n+1) = |A077974(n+1)|.
a(n) = u(n+1) - 3*u(n) + 2*u(n-1) where u(i) = A003230(i) [Daykin and Tucker]. - N. J. A. Sloane, Jul 08 2014
a(n) = hypergeom([-n/3,-(1+n)/3,(1-n)/3],[-n/2,-(1+n)/2],-27/2)) for n>=3. - Peter Luschny, Mar 09 2015
|
|
MAPLE
|
seq(add(binomial(n-2*k, k)*2^k, k=0..floor(n/3)), n=1..38); # Zerinvary Lajos, Apr 03 2007
with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S), S=Sequence(U, card >= 1), U=Sequence(Z, card >=3)}, unlabeled]: seq(count(SeqSeqSeqL, size=n+4), n=0..35); # Zerinvary Lajos, Apr 04 2009
a := n -> `if`(n<3, [1, 1, 3][n+1], hypergeom([-n/3, -(1+n)/3, (1-n)/3], [-n/2, -(1+n)/2], -27/2)); seq(simplify(a(n)), n=0..35); # Peter Luschny, Mar 09 2015
|
|
MATHEMATICA
|
LinearRecurrence[{1, 0, 2}, {1, 1, 3}, 40] (* Vincenzo Librandi, Jun 12 2012 *)
|
|
PROG
|
(Magma) I:=[1, 1, 3]; [n le 3 select I[n] else Self(n-1)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 12 2012
(Haskell)
a003229 n = a003229_list !! n
a003229_list = 1 : 1 : 3 : zipWith (+)
(map (* 2) a003229_list) (drop 2 a003229_list)
-- Reinhard Zumkeller, Jan 01 2014
|
|
CROSSREFS
|
Cf. A077949, A077974. First differences of A003479. Partial sums of A052537. Equals |A077906(n)|+|A077906(n+1)|.
Cf. A155761, A003230.
Sequence in context: A164939 A125272 A127443 * A077949 A077974 A126273
Adjacent sequences: A003226 A003227 A003228 * A003230 A003231 A003232
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|