login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155761
Riordan array (c(2*x^2), x*c(2*x^2)) where c(x) is the g.f. of A000108.
3
1, 0, 1, 2, 0, 1, 0, 4, 0, 1, 8, 0, 6, 0, 1, 0, 20, 0, 8, 0, 1, 40, 0, 36, 0, 10, 0, 1, 0, 112, 0, 56, 0, 12, 0, 1, 224, 0, 224, 0, 80, 0, 14, 0, 1, 0, 672, 0, 384, 0, 108, 0, 16, 0, 1, 1344, 0, 1440, 0, 600, 0, 140, 0, 18, 0, 1
OFFSET
0,4
COMMENTS
Inverse of Riordan array (1/(1+2*x^2), x/(1+2*x^2)).
FORMULA
T(n,k) = (1+(-1)^(n-k)) * ((k+1)/(n+1)) * binomial(n+1, (n-k)/2) * 2^((n-k-2)/2).
Sum_{k=0..n} T(n, k) = A126087(n).
T(n,k) = 2^((n-k)/2) * A053121(n,k). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(2*n-k, k) = A064062(n+1). - G. C. Greubel, Jun 06 2021
EXAMPLE
Triangle begins:
1;
0, 1;
2, 0, 1;
0, 4, 0, 1;
8, 0, 6, 0, 1;
0, 20, 0, 8, 0, 1;
40, 0, 36, 0, 10, 0, 1;
0, 112, 0, 56, 0, 12, 0, 1;
224, 0, 224, 0, 80, 0, 14, 0, 1;
Production matrix begins as:
0, 1;
2, 0, 1;
0, 2, 0, 1;
0, 0, 2, 0, 1;
0, 0, 0, 2, 0, 1;
0, 0, 0, 0, 2, 0, 1;
0, 0, 0, 0, 0, 2, 0, 1;
0, 0, 0, 0, 0, 0, 2, 0, 1;
0, 0, 0, 0, 0, 0, 0, 2, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1;
MATHEMATICA
T[n_, k_]:= (1+(-1)^(n-k))*2^((n-k-2)/2)*((k+1)/(n+1))*Binomial[n+1, (n-k)/2];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 06 2021 *)
PROG
(Sage)
def A155761(n, k): return (1+(-1)^(n-k))*2^((n-k-2)/2)*((k+1)/(n+1))*binomial(n+1, (n-k)/2)
flatten([[A155761(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 06 2021
CROSSREFS
Cf. A064062, A126087 (row sums).
Sequence in context: A111959 A110109 A145973 * A067631 A134317 A123641
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jan 26 2009
STATUS
approved