login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111959
Renewal array for aerated central binomial coefficients.
4
1, 0, 1, 2, 0, 1, 0, 4, 0, 1, 6, 0, 6, 0, 1, 0, 16, 0, 8, 0, 1, 20, 0, 30, 0, 10, 0, 1, 0, 64, 0, 48, 0, 12, 0, 1, 70, 0, 140, 0, 70, 0, 14, 0, 1, 0, 256, 0, 256, 0, 96, 0, 16, 0, 1, 252, 0, 630, 0, 420, 0, 126, 0, 18, 0, 1, 0, 1024, 0, 1280, 0, 640, 0, 160, 0, 20, 0, 1, 924, 0, 2772, 0
OFFSET
0,4
COMMENTS
Row sums are A098615.
Binomial transform (product with C(n,k)) is A111960.
Diagonal sums are A026671 (with interpolated zeros).
Inverse is (1/sqrt(1+4x^2),x/sqrt(1+4x^2)), or (sqrt(-1))^(n-k)*T(n,k). [corrected by Peter Bala, Aug 13 2021]
The Riordan array (1,x/sqrt(1-4*x^2)) is the same array with an additional column of zeros (besides the top element 1) added to the left. - Vladimir Kruchinin, Feb 17 2011
LINKS
Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
FORMULA
Riordan array (1/sqrt(1-4x^2), x/sqrt(1-4x^2)); number triangle T(n, k)=(1+(-1)^(n-k))*binomial((n-1)/2, (n-k)/2)*2^(n-k)/2.
G.f.: 1/(1-xy-2x^2/(1-x^2/(1-x^2/(1-x^2/(1-.... (continued fraction). - Paul Barry, Jan 28 2009
From Peter Bala, Aug 13 2021: (Start)
T(2*n,2*k) = A046521(n,k); T(2*n+1,2*k+1) = A038231(n,k).
The row entries, read from right to left, are the coefficients in the n-th order Taylor polynomial of (sqrt(1 + 4*x^2))^((n-1)/2) at x = 0.
The infinitesimal generator of this array has the sequence [2, 4, 6, 8, 10, ...] on the second subdiagonal below the main diagonal and zeros elsewhere.
The m-th power of the array is the Riordan array (1/sqrt(1 - 4*m*x^2), x/sqrt(1 - 4*m*x^2)) with entries given by sqrt(m)^(n-k)*T(n,k). (End)
EXAMPLE
From Peter Bala, Aug 13 2021: (Start)
Triangle begins
1;
0, 1;
2, 0, 1;
0, 4, 0, 1;
6, 0, 6, 0, 1;
0, 16, 0, 8, 0, 1;
Infinitesimal generator begins
0;
0, 0;
2, 0, 0;
0, 4, 0, 0;
0, 0, 6, 0, 0;
0, 0, 0, 8, 0, 0; (End)
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Aug 23 2005
STATUS
approved