The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111957 Triangle read by rows: T(n,k) = gcd(Fibonacci(n), Lucas(k)), 1 <= k <= n. 3
 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 18, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 29, 1, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened Paulo Ribenboim, FFF (Favorite Fibonacci Flowers), Fib. Quart. 43 (No. 1, 2005), 3-14. FORMULA T(n, k) = Lucas(g), where g = gcd(n, k), if n/g is even; = 2 if n/g is odd and 3|g; = 1 otherwise. EXAMPLE Triangle begins: 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, ============================= MATHEMATICA Flatten[Table[GCD[Fibonacci[n], LucasL[k]], {n, 20}, {k, n}]] (* Alonso del Arte, Dec 19 2015 *) PROG (MAGMA) /* As triangle */ [[Gcd(Fibonacci(n), Lucas(k)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Dec 20 2015 CROSSREFS Cf. A000045, A000032, A111946, A111956. Sequence in context: A144966 A320000 A119805 * A125168 A324725 A328392 Adjacent sequences:  A111954 A111955 A111956 * A111958 A111959 A111960 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Nov 28 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 17:10 EDT 2021. Contains 345120 sequences. (Running on oeis4.)