login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111957
Triangle read by rows: T(n,k) = gcd(Fibonacci(n), Lucas(k)), 1 <= k <= n.
3
1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 18, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 29, 1, 1, 1, 1, 1, 1
OFFSET
1,6
LINKS
Paulo Ribenboim, FFF (Favorite Fibonacci Flowers), Fib. Quart. 43 (No. 1, 2005), 3-14.
FORMULA
T(n, k) = Lucas(g), where g = gcd(n, k), if n/g is even; = 2 if n/g is odd and 3|g; = 1 otherwise.
EXAMPLE
Triangle begins:
1,
1, 1,
1, 1, 2,
1, 3, 1, 1,
1, 1, 1, 1, 1,
1, 1, 4, 1, 1, 2,
1, 1, 1, 1, 1, 1, 1,
1, 3, 1, 7, 1, 3, 1, 1,
1, 1, 2, 1, 1, 2, 1, 1, 2,
1, 1, 1, 1, 11, 1, 1, 1, 1, 1,
=============================
MATHEMATICA
Flatten[Table[GCD[Fibonacci[n], LucasL[k]], {n, 20}, {k, n}]] (* Alonso del Arte, Dec 19 2015 *)
PROG
(Magma) /* As triangle */ [[Gcd(Fibonacci(n), Lucas(k)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Dec 20 2015
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Nov 28 2005
STATUS
approved