

A119805


a(1) = 1. For m >= 0 and 1 <= k <= 2^m, a(2^m +k) = number of earlier terms of the sequence which equal k.


2



1, 1, 2, 1, 3, 1, 1, 0, 5, 1, 1, 0, 1, 0, 0, 0, 8, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Table of n, a(n) for n=1..105.


EXAMPLE

8 = 2^2 + 4; so for a(8) we want the number of terms among terms a(1), a(2),... a(7) which equal 4. So a(8) = 0.


PROG

(PARI) A119805(mmax)= { local(a, ncopr); a=[1]; for(m=0, mmax, for(k=1, 2^m, ncopr=0; for(i=1, 2^m+k1, if( a[i]==k, ncopr++; ); ); a=concat(a, ncopr); ); ); return(a); } { print(A119805(6)); }  R. J. Mathar, May 30 2006


CROSSREFS

Cf. A119804.
Sequence in context: A199056 A144966 A320000 * A111957 A125168 A324725
Adjacent sequences: A119802 A119803 A119804 * A119806 A119807 A119808


KEYWORD

easy,nonn


AUTHOR

Leroy Quet, May 24 2006


EXTENSIONS

More terms from R. J. Mathar, May 30 2006


STATUS

approved



