login
A119805
a(1) = 1. For m >= 0 and 1 <= k <= 2^m, a(2^m +k) = number of earlier terms of the sequence which equal k.
2
1, 1, 2, 1, 3, 1, 1, 0, 5, 1, 1, 0, 1, 0, 0, 0, 8, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,3
EXAMPLE
8 = 2^2 + 4; so for a(8) we want the number of terms among terms a(1), a(2),... a(7) which equal 4. So a(8) = 0.
PROG
(PARI) A119805(mmax)= { local(a, ncopr); a=[1]; for(m=0, mmax, for(k=1, 2^m, ncopr=0; for(i=1, 2^m+k-1, if( a[i]==k, ncopr++; ); ); a=concat(a, ncopr); ); ); return(a); } { print(A119805(6)); } \\ R. J. Mathar, May 30 2006
CROSSREFS
Cf. A119804.
Sequence in context: A350004 A144966 A320000 * A111957 A125168 A324725
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, May 24 2006
EXTENSIONS
More terms from R. J. Mathar, May 30 2006
STATUS
approved