

A119802


a(1) = 1. For m >= 0 and 1 <= k <= 2^m, a(2^m +k) = number of earlier terms of the sequence which equal a(k).


2



1, 1, 2, 2, 2, 2, 4, 4, 2, 2, 6, 6, 6, 6, 2, 2, 2, 2, 10, 10, 10, 10, 2, 2, 12, 12, 4, 4, 4, 4, 12, 12, 2, 2, 14, 14, 14, 14, 6, 6, 14, 14, 6, 7, 7, 7, 14, 14, 14, 14, 4, 4, 4, 4, 14, 14, 4, 4, 12, 12, 12, 12, 8, 8, 2, 2, 16, 16, 16, 16, 12, 12, 16, 16, 7, 7, 7, 7, 16, 16, 16, 16, 4, 4, 4, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Table of n, a(n) for n=1..86.


EXAMPLE

8 = 2^2 + 4; so for a(8) we want the number of terms among terms a(1), a(2),... a(7) which equal a(4) = 2. So a(8) = 4.


PROG

(PARI) A119802(mmax)= { local(a, ncopr); a=[1]; for(m=0, mmax, for(k=1, 2^m, ncopr=0; for(i=1, 2^m+k1, if( a[i]==a[k], ncopr++; ); ); a=concat(a, ncopr); ); ); return(a); } { print(A119802(6)); }  R. J. Mathar, May 30 2006


CROSSREFS

Cf. A119803.
Sequence in context: A060632 A160407 A007457 * A237120 A060369 A179004
Adjacent sequences: A119799 A119800 A119801 * A119803 A119804 A119805


KEYWORD

easy,nonn


AUTHOR

Leroy Quet, May 24 2006


EXTENSIONS

More terms from R. J. Mathar, May 30 2006


STATUS

approved



