|
|
A119800
|
|
Array of coordination sequences for cubic lattices (rows) and of numbers of L1 forms in cubic lattices (columns) (array read by antidiagonals).
|
|
15
|
|
|
4, 8, 6, 12, 18, 8, 16, 38, 32, 10, 20, 66, 88, 50, 12, 24, 102, 192, 170, 72, 14, 28, 146, 360, 450, 292, 98, 16, 32, 198, 608, 1002, 912, 462, 128, 18, 36, 258, 952, 1970, 2364, 1666, 688, 162, 20, 40, 326, 1408, 3530, 5336, 4942, 2816, 978, 200, 22
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389.
J. Serra-Sagrista, Enumeration of lattice points in l_1 norm, Information Processing Letters, 76, no. 1-2 (2000), 39-44.
|
|
LINKS
|
|
|
FORMULA
|
A(m,n) = A(m,n-1) + A(m-1,n) + A(m-1,n-1), A(m,0)=1, A(0,0)=1, A(0,n)=2.
|
|
EXAMPLE
|
The second row of the table is: 6, 18, 38, 66, 102, 146, 198, 258, 326, ... = A005899 = number of points on surface of octahedron.
The third column of the table is: 12, 38, 88, 170, 292, 462, 688, 978, 1340, ... = A035597 = number of points of L1 norm 3 in cubic lattice Z^n.
The main diagonal seems to be A050146.
|
|
MAPLE
|
A:= proc(m, n) option remember;
`if`(n=0, 1, `if`(m=0, 2, A(m, n-1) +A(m-1, n) +A(m-1, n-1)))
end:
|
|
MATHEMATICA
|
A[m_, n_] := A[m, n] = If[n == 0, 1, If[m == 0, 2, A[m, n-1] + A[m-1, n] + A[m-1, n-1]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
|
|
PROG
|
Excel cell formula: =Z(-1)S(-1)+Z(-1)S+ZS(-1). The very first row (not included into the table) contains the initialization values: 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... The very first column (not included into the table) contains the initialization values: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... Note that the first cell is common to both the initialization row and initialization column and it equal to 1.
|
|
CROSSREFS
|
Cf. A008574, A005899, A008412, A008413, A008414, A008415, A008416, A008418, A008420, A005843, A005843, A001105, A035597, A035598, A035599, A035600, A035601, A035602, A035603, A050146.
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|