The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035603 Number of points of L1 norm 9 in cubic lattice Z^n. 4
 0, 2, 36, 326, 1992, 9290, 35436, 115598, 332688, 864146, 2060980, 4573910, 9545560, 18892250, 35704060, 64797470, 113461024, 192441122, 317222212, 509663334, 800061160, 1229718378, 1854105484, 2746713774, 4003707568 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf). M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From N. J. A. Sloane, Feb 13 2013 M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5. Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44. Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1). FORMULA a(n) = (4*n^9 + 168*n^7 + 1596*n^5 + 3272*n^3 + 630*n)/(5*7*9*9). - Frank Ellermann, Mar 16 2002 G.f.: 2*x*(1+x)^8/(1-x)^10. - Colin Barker, Apr 15 2012 a(n) = 2*A099196(n). - R. J. Mathar, Dec 10 2013 MAPLE f := proc(d, m) local i; sum( 2^i*binomial(d, i)*binomial(m-1, i-1), i=1..min(d, m)); end; # n=dimension, m=norm MATHEMATICA CoefficientList[Series[2*x*(1+x)^8/(1-x)^10, {x, 0, 30}], x] (* Vincenzo Librandi, Apr 24 2012 *) LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 2, 36, 326, 1992, 9290, 35436, 115598, 332688, 864146}, 30] (* Harvey P. Dale, Jan 17 2021 *) PROG (PARI) a(n)=(4*n^9+168*n^7+1596*n^5+3272*n^3+630*n)/2835 \\ Charles R Greathouse IV, Dec 07 2011 (Magma) [(4*n^9+168*n^7+1596*n^5+3272*n^3+630*n)/2835: n in [0..30]]; // Vincenzo Librandi, Apr 24 2012 CROSSREFS Cf. A035596-A035607. Sequence in context: A082636 A242533 A273325 * A126735 A229679 A119582 Adjacent sequences: A035600 A035601 A035602 * A035604 A035605 A035606 KEYWORD nonn,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 14:26 EDT 2024. Contains 373331 sequences. (Running on oeis4.)