login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035606
Number of points of L1 norm 12 in cubic lattice Z^n.
5
0, 2, 48, 578, 4672, 28610, 142000, 596610, 2187520, 7159170, 21278640, 58227906, 148321344, 354870594, 803467056, 1732242690, 3575055360, 7094825730, 13591279920, 25216532290, 45443741760, 79749022402
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - N. J. A. Sloane, Feb 13 2013
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
From Colin Barker, Apr 15 2012: (Start)
a(n) = 2*n^2*(146430 + 239327*n^2 + 74800*n^4 + 6996*n^6 + 220*n^8 + 2*n^10)/467775.
G.f.: 2*x*(1+x)^11/(1-x)^13. (End)
MAPLE
f := proc(d, m) local i; sum( 2^i*binomial(d, i)*binomial(m-1, i-1), i=1..min(d, m)); end; # n=dimension, m=norm
MATHEMATICA
CoefficientList[Series[2*x*(1+x)^11/(1-x)^13, {x, 0, 30}], x](* Vincenzo Librandi, Apr 24 2012 *)
LinearRecurrence[{13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1}, {0, 2, 48, 578, 4672, 28610, 142000, 596610, 2187520, 7159170, 21278640, 58227906, 148321344}, 40] (* Harvey P. Dale, May 29 2021 *)
PROG
(Magma) I:=[0, 2, 48, 578, 4672, 28610, 142000, 596610, 2187520, 7159170, 21278640, 58227906, 148321344]; [n le 13 select I[n] else 13*Self(n-1)-78*Self(n-2)+286*Self(n-3)-715*Self(n-4)+1287*Self(n-5)-1716*Self(n-6)+1716*Self(n-7)-1287*Self(n-8)+715*Self(n-9)-286*Self(n-10)+78*Self(n-11)-13*Self(n-12)+Self(n-13): n in [1..30]]; // Vincenzo Librandi, Apr 24 2012
CROSSREFS
Sequence in context: A051252 A231654 A005429 * A157057 A290690 A013523
KEYWORD
nonn,easy
STATUS
approved