login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290690
E.g.f.: exp(Sum_{k>=1} (k-1)^3*x^k).
2
1, 0, 2, 48, 660, 8640, 132600, 2520000, 56046480, 1375557120, 36456769440, 1041522451200, 32083867126080, 1061964845061120, 37543201808112000, 1409292653408640000, 55917035430800544000, 2337184142686903910400, 102624865930477758067200
OFFSET
0,3
LINKS
FORMULA
a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} (k-1)^3*k*a(n-k)/(n-k)! for n > 0.
From Vaclav Kotesovec, Jul 31 2021: (Start)
E.g.f.: exp(x^2*(1 + 4*x + x^2)/(1-x)^4).
a(n) ~ exp(65/384 - 101 * 2^(2/5) * 3^(4/5) * n^(1/5) / 1200 + 11 * 2^(4/5) * 3^(3/5) * n^(2/5) / 80 - 2^(-4/5) * 3^(2/5) * n^(3/5) + 5 * 2^(-7/5) * 3^(1/5) * n^(4/5) - n) * 2^(3/10) * 3^(1/10) * n^(n - 1/10) / sqrt(5).
(End)
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[x^2*(1 + 4*x + x^2)/(1-x)^4], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 31 2021 *)
PROG
(PARI) {a(n) = n!*polcoeff(exp(sum(k=1, n, (k-1)^3*x^k)+x*O(x^n)), n)}
CROSSREFS
E.g.f.: exp(Sum_{k>=1} (k-1)^m*x^k): A000262 (m=0), A052887 (m=1), A288270 (m=2), this sequence (m=3).
Cf. A255819.
Sequence in context: A005429 A035606 A157057 * A013523 A260846 A009670
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 20 2017
STATUS
approved