login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288270
E.g.f.: exp(Sum_{k>=1} (k-1)^2*x^k).
2
1, 0, 2, 24, 228, 2400, 30360, 453600, 7702800, 144910080, 2981089440, 66561264000, 1603358729280, 41434803970560, 1142808612865920, 33485770103385600, 1038238875100627200, 33945895488708403200, 1166858228814204326400, 42055660151648798054400
OFFSET
0,3
LINKS
FORMULA
a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} (k-1)^2*k*a(n-k)/(n-k)! for n > 0.
E.g.f.: exp(x^2*(1 + x)/(1 - x)^3). - Ilya Gutkovskiy, Jul 27 2020
a(n) ~ 2^(-7/8) * 3^(1/8) * n^(n - 1/8) / exp(n - 2^(9/4)*n^(3/4)/3^(3/4) + sqrt(2*n/3) - 2^(3/4)*n^(1/4)/3^(5/4) + 13/54). - Vaclav Kotesovec, Jul 31 2021
PROG
(PARI) {a(n) = n!*polcoeff(exp(sum(k=1, n, (k-1)^2*x^k)+x*O(x^n)), n)}
CROSSREFS
E.g.f.: exp(Sum_{k>=1} (k-1)^m*x^k): A000262 (m=0), A052887 (m=1), this sequence (m=2), A290690 (m=3).
Cf. A255807.
Sequence in context: A121213 A147538 A180388 * A221653 A219205 A025131
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 20 2017
STATUS
approved