login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288269
Expansion of e.g.f.: exp(Sum_{k>=1} (k-1)*k*x^k).
2
1, 0, 4, 36, 336, 3840, 52800, 836640, 14864640, 291755520, 6264276480, 145962432000, 3665362821120, 98604459233280, 2827182573895680, 86016204578304000, 2766450467708928000, 93741871082943283200, 3336807307530977280000, 124443669133537276723200
OFFSET
0,3
LINKS
FORMULA
a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} (k-1)*k^2*a(n-k)/(n-k)! for n > 0.
E.g.f.: exp(2*x^2/(1 - x)^3). - Ilya Gutkovskiy, Jul 27 2020
a(n) ~ 3^(1/8) * exp(2/27 - (n/6)^(1/4)/12 - (n/6)^(1/2) + 8*(n/6)^(3/4) - n) * n^(n - 1/8) / 2^(7/8) * (1 - 3203/34560 * (6/n)^(1/4)). - Vaclav Kotesovec, Mar 10 2021
a(n) = 4*(n-1)*a(n-1) - 2*(n-1)*(3*n-8)*a(n-2) + 2*(n-2)*(n-1)*(2*n-5)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Dec 01 2021
MATHEMATICA
With[{m = 30}, CoefficientList[Series[Exp[2*x^2/(1-x)^3], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Mar 10 2021 *)
PROG
(PARI) {a(n) = n!*polcoeff(exp(sum(k=1, n, (k-1)*k*x^k)+x*O(x^n)), n)}
(Sage) [factorial(n)*( exp(2*x^2/(1-x)^3) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 10 2021
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(2*x^2/(1-x)^3) ))); // G. C. Greubel, Mar 10 2021
CROSSREFS
Sequence in context: A226283 A270473 A374388 * A189334 A026334 A247562
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 20 2017
STATUS
approved