Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Dec 01 2021 16:44:12
%S 1,0,4,36,336,3840,52800,836640,14864640,291755520,6264276480,
%T 145962432000,3665362821120,98604459233280,2827182573895680,
%U 86016204578304000,2766450467708928000,93741871082943283200,3336807307530977280000,124443669133537276723200
%N Expansion of e.g.f.: exp(Sum_{k>=1} (k-1)*k*x^k).
%H Seiichi Manyama, <a href="/A288269/b288269.txt">Table of n, a(n) for n = 0..420</a>
%F a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} (k-1)*k^2*a(n-k)/(n-k)! for n > 0.
%F E.g.f.: exp(2*x^2/(1 - x)^3). - _Ilya Gutkovskiy_, Jul 27 2020
%F a(n) ~ 3^(1/8) * exp(2/27 - (n/6)^(1/4)/12 - (n/6)^(1/2) + 8*(n/6)^(3/4) - n) * n^(n - 1/8) / 2^(7/8) * (1 - 3203/34560 * (6/n)^(1/4)). - _Vaclav Kotesovec_, Mar 10 2021
%F a(n) = 4*(n-1)*a(n-1) - 2*(n-1)*(3*n-8)*a(n-2) + 2*(n-2)*(n-1)*(2*n-5)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4). - _Vaclav Kotesovec_, Dec 01 2021
%t With[{m = 30}, CoefficientList[Series[Exp[2*x^2/(1-x)^3], {x, 0, m}], x]*Range[0, m]!] (* _G. C. Greubel_, Mar 10 2021 *)
%o (PARI) {a(n) = n!*polcoeff(exp(sum(k=1, n, (k-1)*k*x^k)+x*O(x^n)), n)}
%o (Sage) [factorial(n)*( exp(2*x^2/(1-x)^3) ).series(x,n+1).list()[n] for n in (0..30)] # _G. C. Greubel_, Mar 10 2021
%o (Magma)
%o R<x>:=PowerSeriesRing(Rationals(), 30);
%o Coefficients(R!(Laplace( Exp(2*x^2/(1-x)^3) ))); // _G. C. Greubel_, Mar 10 2021
%Y Cf. A052887, A288268.
%K nonn
%O 0,3
%A _Seiichi Manyama_, Oct 20 2017