login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189334
Expansion of g.f. (1-6*x+x^2)/(1-10*x+5*x^2).
1
1, 4, 36, 340, 3220, 30500, 288900, 2736500, 25920500, 245522500, 2325622500, 22028612500, 208658012500, 1976437062500, 18721080562500, 177328620312500, 1679680800312500, 15910164901562500, 150703245014062500, 1427481625632812500, 13521300031257812500, 128075592184414062500
OFFSET
0,2
COMMENTS
(Start) Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,3)=
(0 0 0 1 0)
(0 0 1 0 1)
(0 1 0 2 0)
(1 0 2 0 1)
(0 2 0 2 0).
Then a(n)=(1/5)*Trace(A^(2*n)). (See also A189317.) (End)
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers (here they are A^(2*n)) of a unit-primitive matrix A_(N,r) (0<r<floor(N/2)) and for which the closed-form expression for a(n) is derived from the eigenvalues of A_(N,r).
FORMULA
a(n) = 10*a(n-1) - 5*a(n-2), n>2, a(0)=1, a(1)=4, a(2)=36.
a(n) = (1/5)*Sum_{k=1..5} ((w_k)^3-2*w_k)^(2*n), w_k = 2*cos((2*k-1)*Pi/10).
From Stefano Spezia, Jul 09 2024: (Start)
a(n) = 2*((5 - 2*sqrt(5))^n + (5 + 2*sqrt(5))^n)/5 for n > 0.
E.g.f.: (1 + 4*exp(5*x)*cosh(2*sqrt(5)*x))/5. (End)
MATHEMATICA
LinearRecurrence[{10, -5}, {1, 4, 36}, 22] (* Stefano Spezia, Jul 09 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
L. Edson Jeffery, Apr 20 2011
EXTENSIONS
a(20)-a(21) from Stefano Spezia, Jul 09 2024
STATUS
approved