login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189334 Expansion of (1-6*x+x^2)/(1-10*x+5*x^2) 1
1, 4, 36, 340, 3220, 30500, 288900, 2736500, 25920500, 245522500, 2325622500, 22028612500, 208658012500, 1976437062500, 18721080562500, 177328620312500, 1679680800312500, 15910164901562500, 150703245014062500, 1427481625632812500 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

(Start) Let A be the unit-primitive matrix (see [Jeffery])

A=A_(10,3)=

(0 0 0 1 0)

(0 0 1 0 1)

(0 1 0 2 0)

(1 0 2 0 1)

(0 2 0 2 0).

Then a(n)=(1/5)*Trace(A^(2*n)). (See also A189317.) (End)

Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers (here they are A^(2*n)) of a unit-primitive matrix A_(N,r) (0<r<floor(N/2)) and for which the closed-form expression for a(n) is derived from the eigenvalues of A_(N,r).

LINKS

Table of n, a(n) for n=0..19.

L. E. Jeffery, Unit-primitive matrices.

FORMULA

G.f.: (1-6*x+x^2)/(1-10*x+5*x^2).

a(n)=10*a(n-1)-5*a(n-2), n>2, a(0)=1, a(1)=4, a(2)=36.

a(n)=(1/5)*Sum_{k=1..5) ((w_k)^3-2*w_k)^(2*n), w_k=2*cos((2*k-1)*Pi/10).

CROSSREFS

A189315, A189316, A189317, A189318.

Sequence in context: A226283 A270473 A288269 * A026334 A247562 A168595

Adjacent sequences:  A189331 A189332 A189333 * A189335 A189336 A189337

KEYWORD

nonn

AUTHOR

L. Edson Jeffery, Apr 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 21:08 EST 2022. Contains 350565 sequences. (Running on oeis4.)