login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372465
Coefficient of x^n in the expansion of 1 / ( (1-x) * (1-x+x^3) )^(2*n).
1
1, 4, 36, 358, 3740, 40194, 439998, 4879326, 54630316, 616194700, 6991215286, 79700776588, 912207989030, 10475536585674, 120641989237890, 1392811194744288, 16114668707519404, 186798818992569818, 2168990381036497812, 25222834639587149890, 293708687012053512870
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n+k-1,k) * binomial(5*n-2*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 * (1-x+x^3)^2 ). See A368976.
PROG
(PARI) a(n, s=3, t=2, u=2) = sum(k=0, n\s, (-1)^k*binomial(t*n+k-1, k)*binomial((t+u+1)*n-(s-1)*k-1, n-s*k));
CROSSREFS
Sequence in context: A189334 A026334 A247562 * A168595 A163455 A371772
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 01 2024
STATUS
approved