login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A168595
a(n) = Sum_{k=0..2n} C(2n,k)*A027907(n,k) where A027907 is the triangle of trinomial coefficients.
4
1, 4, 36, 358, 3748, 40404, 443886, 4941654, 55555236, 629285416, 7170731236, 82108083204, 943960439086, 10889085499348, 125974782200478, 1461030555025458, 16981658850393252, 197757344280343968
OFFSET
0,2
COMMENTS
Compare to A092765(n) = Sum_{k=0..2n} (-1)^k*C(2n,k)*A027907(n,k), which is the number of paths of length n ending at origin in 1-D random walk with jumps to next-nearest neighbors.
FORMULA
a(n) = 2*A132306(n) for n > 0. - Mark van Hoeij, Jul 02 2010
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*cb(n+k) with cb(n) = binomial(2n,n). - Peter Luschny, Aug 15 2017
MAPLE
cb := n -> binomial(2*n, n);
a := n -> add((-1)^(n-k)*binomial(n, k)*cb(n+k), k=0..n);
seq(a(n), n=0..17); # Peter Luschny, Aug 15 2017
PROG
(PARI) {a(n)=sum(k=0, 2*n, binomial(2*n, k)*polcoeff((1+x+x^2)^n, k))}
CROSSREFS
Sequence in context: A026334 A247562 A372465 * A163455 A371772 A138736
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 30 2009
STATUS
approved