login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371772
a(n) = Sum_{k=0..floor(n/3)} binomial(5*n-3*k-1,n-3*k).
3
1, 4, 36, 365, 3892, 42714, 477621, 5411109, 61901268, 713435333, 8271470666, 96361329024, 1127086021461, 13227336997645, 155680966681101, 1836862248992565, 21719923705450260, 257316706385394615, 3053599633736172765, 36292098436808314572, 431918050456887676362
OFFSET
0,2
FORMULA
a(n) = [x^n] 1/((1-x^3) * (1-x)^(4*n)).
a(n) = binomial(5*n-1, n)*hypergeom([1, (1-n)/3, (2-n)/3, -n/3], [(1-5*n)/3, (2-5*n)/3, 1-5*n/3], 1). - Stefano Spezia, Apr 06 2024
From Vaclav Kotesovec, Apr 08 2024: (Start)
Recurrence: 72*n*(2*n - 1)*(4*n - 3)*(4*n - 1)*(899*n^2 - 2355*n + 1534)*a(n) = (25514519*n^6 - 117751221*n^5 + 212960873*n^4 - 191684487*n^3 + 89835824*n^2 - 20567076*n + 1769040)*a(n-1) - 5*(5*n - 7)*(5*n - 6)*(5*n - 4)*(5*n - 3)*(899*n^2 - 557*n + 78)*a(n-2).
a(n) ~ 5^(5*n + 5/2) / (31 * sqrt(Pi*n) * 2^(8*n + 3/2)). (End)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(5*n-3*k-1, n-3*k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 05 2024
STATUS
approved