OFFSET
0,2
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = [x^n] 1/(((1-x)^2-x^3) * (1-x)^n).
a(n) = binomial(2*(n-1), n-1)*hypergeom([1, (1-n)/3, (2-n)/3, 1-n/3], [1-n, 3/2-n, n], -27/4). - Stefano Spezia, Apr 06 2024
From Vaclav Kotesovec, Apr 08 2024: (Start)
Recurrence: n*(n^2 - 7)*a(n) = (9*n^3 - 2*n^2 - 79*n + 60)*a(n-1) - 2*(12*n^3 - 5*n^2 - 124*n + 150)*a(n-2) + (17*n^3 - 8*n^2 - 183*n + 240)*a(n-3) - 2*(2*n - 5)*(n^2 + 2*n - 6)*a(n-4).
a(n) ~ 2^(2*n+2) / sqrt(Pi*n). (End)
MATHEMATICA
Table[Sum[Binomial[2n-k+1, n-3k], {k, 0, Floor[n/3]}], {n, 0, 30}] (* Harvey P. Dale, Sep 09 2024 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-k+1, n-3*k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 05 2024
STATUS
approved