login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371842
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-2*k+1,n-3*k).
2
1, 3, 10, 36, 133, 498, 1882, 7161, 27391, 105210, 405499, 1567332, 6072724, 23578221, 91712089, 357301827, 1393986898, 5445422340, 21296030401, 83370591273, 326688422203, 1281227165640, 5028742763407, 19751799462378, 77632592859316, 305316702610581
OFFSET
0,2
FORMULA
a(n) = [x^n] 1/((1-x-x^3) * (1-x)^(n+1)).
From Vaclav Kotesovec, Apr 08 2024: (Start)
Recurrence: (n-1)*a(n) = (9*n-11)*a(n-1) - 2*(11*n-16)*a(n-2) + (9*n-13)*a(n-3) - 2*(2*n-3)*a(n-4).
G.f.: 2 / (4*x^2 + 3*x*sqrt(1-4*x) - 9*x + 2).
a(n) ~ 2^(2*n+3) / (3*sqrt(Pi*n)). (End)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-2*k+1, n-3*k));
CROSSREFS
Cf. A105872.
Sequence in context: A055989 A329533 A102871 * A277287 A119374 A371773
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 08 2024
STATUS
approved