login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119374
A lower diagonal of pendular trinomial triangle A119369.
8
1, 3, 10, 36, 133, 501, 1918, 7440, 29180, 115522, 461044, 1852938, 7492846, 30464306, 124461782, 510696350, 2103708187, 8696498477, 36066269640, 150015248758, 625664295594, 2615929689642, 10962436020878, 46037427169060
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = B(x)^3/(1+x - x*B(x)) = B(x)^3*G(x) = B(x)^2*H(x) = B(x)*I(x), where B(x) is g.f. of A119370, G(x) is g.f. of A119371, H(x) is g.f. of A119372 and I(x) is g.f. of A119373.
G.f.: 16*(1+x)/( ((1+x^2) +sqrt((1+x^2)^2-4*x*(1+x)))^3*(1+4*x+x^2 +sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x))) ).
MATHEMATICA
CoefficientList[Series[16*(1+x)/( ((1+x^2) +Sqrt[(1+x^2)^2 -4*x*(1+x)])^3*(1+4*x +x^2 +Sqrt[(1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x)])), {x, 0, 30}], x] (* G. C. Greubel, Mar 16 2021 *)
PROG
(PARI) {a(n)=polcoeff(16*(1+x)/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x*O(x^n)))^3 /(1+4*x+x^2 + sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x)+x*O(x^n))), n)}
(Sage)
def A119374_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( 16*(1+x)/( ((1+x^2) +sqrt((1+x^2)^2-4*x*(1+x)))^3*(1+4*x+x^2 +sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x))) ) ).list()
A119374_list(30) # G. C. Greubel, Mar 16 2021
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( 16*(1+x)/( ((1+x^2) +Sqrt((1+x^2)^2-4*x*(1+x)))^3*(1+4*x+x^2 +Sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x))) ) )); // G. C. Greubel, Mar 16 2021
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 17 2006
STATUS
approved