login
A119372
G.f. satisfies: A(x) = 1 + x*(1-x-x^2)*A(x) + x^2*(3+2*x)*A(x)^2.
8
1, 1, 3, 9, 30, 104, 374, 1380, 5197, 19893, 77170, 302716, 1198729, 4785455, 19238706, 77821522, 316506253, 1293489529, 5309112257, 21876225899, 90459484106, 375256749620, 1561259497099, 6513108751281, 27238006266620
OFFSET
0,3
COMMENTS
Equals diagonal and row sums of pendular trinomial triangle A119369. Also equals convolution of A119370 and A119371 (central terms of A119369).
LINKS
FORMULA
G.f.: A(x) = (1-x+x^2+x^3 - sqrt( (1-x+x^2+x^3)^2 - 4*x^2*(3+2*x)) )/(2*x^2*(3+2*x)).
G.f.: A(x) = B(x)/(1+x - x*B(x)) = B(x)*G(x), where B(x) is g.f. of A119370, G(x) is g.f. of A119371.
Recurrence: 3*(n+2)*(2*n-1)*a(n) = (20*n^2 - 6*n - 11)*a(n-1) + (28*n^2 - 18*n + 5)*a(n-2) + (8*n^2-12*n-17)*a(n-3) - 3*(2*n^2 - 9*n + 1)*a(n-4) - 2*(n-5)*(2*n+1)*a(n-5). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ sqrt(-8*z^2-5*z^3+2-5*z)*(4+2*z-z^3)^n*(-18-8*z+4*z^3+z^2)*(-35+8*z^3-12*z^2+2*z)/(242*sqrt(Pi)*n^(3/2)), where z = 1/(2*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35+3*sqrt(129))^(1/3)))) - 1/2*sqrt(8/3-1/3*(280-24*sqrt(129))^(1/3) - 2/3*(35+3*sqrt(129))^(1/3) + 8*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35+3*sqrt(129))^(1/3)))) = 0.225270426... is the root of the equation 1-2*z^2+z^4-4*z=0. - Vaclav Kotesovec, Sep 11 2013
MAPLE
m:= 30;
S:= series( (1-x+x^2+x^3 -(1+x)*sqrt(1-4*x-2*x^2+x^4))/(2*x^2*(3+2*x)), x, m+1);
seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Mar 17 2021
MATHEMATICA
CoefficientList[Series[(1-x+x^2+x^3-Sqrt[(1-x+x^2+x^3)^2-4*x^2*(3+2*x)])/(2*x^2*(3+2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 11 2013 *)
PROG
(PARI) {a(n)=polcoeff(2/(1-x+x^2+x^3+sqrt((1-x+x^2+x^3)^2-4*x^2*(3+2*x)+x*O(x^n))), n)}
(Sage)
def A119372_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( (1-x+x^2+x^3 -(1+x)*sqrt(1-4*x-2*x^2+x^4))/(2*x^2*(3+2*x)) ).list()
A119372_list(30) # G. C. Greubel, Mar 17 2021
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( (1-x+x^2+x^3 -(1+x)*Sqrt(1-4*x-2*x^2+x^4))/(2*x^2*(3+2*x)) )); // G. C. Greubel, Mar 17 2021
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 17 2006
STATUS
approved