login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119375
Diagonal above the central terms of pendular trinomial triangle A119369, ignoring leading zeros.
8
1, 3, 11, 40, 149, 564, 2166, 8420, 33074, 131085, 523599, 2105727, 8519469, 34652696, 141621164, 581266730, 2394961851, 9902433681, 41074316737, 170869972460, 712729001716, 2980264528670, 12490379959184, 52458339164169
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = B(x)*(G(x) - 1)/x^2 = B(x)*(B(x) - 1)/(x+x^2 - x^2*B(x)), where B(x) is g.f. of A119370 and G(x) is g.f. of A119371 (central terms of A119369).
G.f.: (1-2*x-x^2 -sqrt(1-4*x-2*x^2+x^4))/( x^2*(1+2*x^3+x^4 +(1+x)^2*sqrt(1-4*x-2*x^2+x^4)) ). - G. C. Greubel, Mar 16 2021
MATHEMATICA
CoefficientList[Series[(1-2*x-x^2 -Sqrt[1-4*x-2*x^2+x^4])/(x^2*(1+2*x^3+x^4 +(1+x)^2*Sqrt[1-4*x-2*x^2+x^4])), {x, 0, 30}], x] (* G. C. Greubel, Mar 16 2021 *)
PROG
(PARI) {a(n)=polcoeff(2/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x^3*O(x^n)))* (2*(1+x)/(1+4*x+x^2 + sqrt((1+4*x+x^2)^2-4*x*(1+x)*(3+2*x)+x^3*O(x^n)))-1)/x^2, n)}
(Sage)
def A119375_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( (1-2*x-x^2 -sqrt(1-4*x-2*x^2+x^4))/( x^2*(1+2*x^3+x^4 +(1+x)^2*sqrt(1-4*x-2*x^2+x^4)) ) ).list()
A119375_list(30) # G. C. Greubel, Mar 16 2021
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( (1-2*x-x^2 - Sqrt(1-4*x-2*x^2+x^4))/( 1+2*x^3+x^4 +(1+x)^2*Sqrt(1-4*x-2*x^2+x^4) ) )); // G. C. Greubel, Mar 16 2021
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 17 2006
STATUS
approved