login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277287
a(n) = binomial(2*n,n) + Sum_{k=1..n} binomial(2*n-k,n-k)*Fibonacci(k).
1
1, 3, 10, 36, 133, 499, 1891, 7217, 27690, 106680, 412368, 1598358, 6209542, 24171004, 94246202, 368022472, 1438965885, 5632870627, 22072920103, 86575738469, 339860843589, 1335186464195, 5249164967309, 20650056413491, 81285516680103
OFFSET
0,2
LINKS
FORMULA
G.f.: (2*x+sqrt(1-4*x)+1)/(2*sqrt(1-4*x)*x-8*x+2).
a(n) = A000984(n) + A257838(n).
a(n) ~ 3 * 2^(2*n) / sqrt(Pi*n). - Vaclav Kotesovec, Oct 09 2016
From Vladimir Reshetnikov, Oct 11 2016: (Start)
a(n) = binomial(2*n-1, n-1)*((hypergeom([1, 1-n], [1-2*n], 1-phi)/phi + hypergeom([1, 1-n], [1-2*n], phi)*phi)/sqrt(5) + 2), where phi=(1+sqrt(5))/2.
Recurrence: (n+1)*(n^2-2)*a(n+1) + 2*(2*n^3+n^2-8*n+3)*a(n-2) + (15*n^3+7*n^2-62*n+26)*a(n-1) = 2*(4*n^3+3*n^2-12*n-1)*a(n). (End)
MAPLE
fib := n -> `if`(n=0, 1, combinat:-fibonacci(n)):
a := n -> add(binomial(2*n-k, n-k)*fib(k), k=0..n):
seq(a(n), n=0..24); # Peter Luschny, Oct 10 2016
MATHEMATICA
Table[Sum[Binomial[2*n-k, n-k]*Fibonacci[k], {k, 1, n}] + Binomial[2*n, n], {n, 0, 20}] (* Vaclav Kotesovec, Oct 09 2016 *)
Round@Table[Binomial[2 n - 1, n - 1] ((Hypergeometric2F1[1, 1 - n, 1 - 2 n, 1 - GoldenRatio]/GoldenRatio + Hypergeometric2F1[1, 1 - n, 1 - 2 n, GoldenRatio] GoldenRatio)/Sqrt[5] + 2), {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Oct 11 2016 *)
PROG
(Maxima) makelist(sum(binomial(2*n-k, n-k)*fib(k), k, 1, n)+binomial(2*n, n), n, 0, 25);
(PARI) a(n) = binomial(2*n, n) + sum(k=1, n, binomial(2*n-k, n-k)*fibonacci(k)); \\ Michel Marcus, Oct 11 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Oct 09 2016
STATUS
approved