login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277286
Composite numbers k such that b^k == b (mod sigma(k)) for every integer b.
0
7381, 13357, 18421, 69121, 70021, 129961, 192589, 241501, 271921, 313501, 342793, 399421, 423613, 625681, 780913, 1265641, 1362097, 1501489, 1566181, 1673101, 1691521, 1728001, 2228941, 2381401, 2472301, 2642221, 3156661, 3171961, 3383281, 3557521, 3730321, 4033861, 4233061, 4831201, 5387041, 6720961
OFFSET
1,1
MAPLE
N:= 10^7: # to get all terms <= N
Q:= select(isprime, [seq(q, q=5..N/9, 4)]):
filter:= proc(n) local s; uses numtheory;
s:= sigma(n);
issqrfree(s) and andmap(p -> (n-1 mod (p-1) = 0), factorset(s));
end proc:
select(filter, {seq(seq(q*m^2, m = 3..floor(sqrt(N/q)), 2), q=[1, op(Q)])}); # Robert Israel, Sep 21 2016
MATHEMATICA
M = 10^7; (* to get all terms <= M *)
Q = Select[Range[5, M/9, 4], PrimeQ];
filter[n_] := Module[{s = DivisorSigma[1, n]}, SquareFreeQ[s] && AllTrue[FactorInteger[s][[All, 1]], Mod[n-1, #-1] == 0&]];
Select[Union@Flatten[Table[Table[q*m^2, {m, 3, Floor[Sqrt[M/q]], 2}], {q, Prepend[Q, 1]}]], filter] (* Jean-François Alcover, May 24 2023, after Robert Israel *)
CROSSREFS
Sequence in context: A043589 A043806 A043824 * A328663 A022255 A189504
KEYWORD
nonn
AUTHOR
Altug Alkan, Oct 09 2016
STATUS
approved