login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022255
Gaussian binomial coefficients [ n,4 ] for q = 9.
1
1, 7381, 49031983, 322140667123, 2113887057661126, 13869447829832637406, 90997618413507253345810, 597035499217287155085549610, 3917150001348391097251303957615, 25700421225173962543056800181928315, 168620463706718874134703442098874261321
OFFSET
4,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..4} (9^(n-i+1)-1)/(9^i-1), by definition. - Vincenzo Librandi, Aug 04 2016
MATHEMATICA
Table[QBinomial[n, 4, 9], {n, 4, 20}] (* Vincenzo Librandi, Aug 04 2016 *)
PROG
(Sage) [gaussian_binomial(n, 4, 9) for n in range(4, 15)] # Zerinvary Lajos, May 27 2009
(Magma) r:=4; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 04 2016
CROSSREFS
Sequence in context: A043824 A277286 A328663 * A189504 A028540 A347164
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 04 2016
STATUS
approved