login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371845
Primes whose second, third, fourth and fifth digits are 2345.
2
123457, 423457, 523459, 723451, 823451, 823457, 923453, 1234511, 1234517, 1234531, 1234537, 1234543, 1234547, 1234577, 2234501, 2234503, 2234513, 2234539, 2234543, 2234549, 2234563, 2234579, 2234587, 2234591, 2234593, 2234597, 3234533, 3234551, 3234599, 4234501, 4234537, 5234513, 5234543, 5234549
OFFSET
1,1
COMMENTS
This sequence is infinite by the Prime Number Theorem. - Charles R Greathouse IV, Apr 09 2024
LINKS
FORMULA
a(n) ≍ n log n. The ratio a(n)/(n log n) is bounded but does not have a limit. - Charles R Greathouse IV, Apr 09 2024
MAPLE
R:= NULL: count:= 0:
for d from 0 while count < 100 do
for a from 1 to 9 while count < 100 do
for b from 1 to 10^d-1 by 2 while count < 100 do
x:= b + 10^d*(2345 + 10000*a);
if isprime(x) then
count:= count+1; R:= R, x
fi
od od od:
R;
MATHEMATICA
p = 12345; s = {}; Do[p = NextPrime[p];
If[2 == IntegerDigits[p][[2]] && 3 == IntegerDigits[p][[3]] && 4 ==IntegerDigits[p][[4]] && 5 == IntegerDigits[p][[5]], AppendTo[s, p]],
{1000000}]; s
PROG
(Python)
from itertools import count, islice
from sympy import primerange
def A371845_gen(): # generator of terms
for l in count(1):
m = 10**l
for a in range(1, 10):
b = (a*10**4+2345)*m
yield from primerange(b, b+m)
A371845_list = list(islice(A371845_gen(), 20)) # Chai Wah Wu, Apr 09 2024
CROSSREFS
Cf. A371833.
Sequence in context: A178476 A104973 A077301 * A209734 A049358 A245682
KEYWORD
nonn,base
AUTHOR
Zak Seidov and Robert Israel, Apr 08 2024
STATUS
approved