

A178476


Permutations of 123456: Numbers having each of the decimal digits 1,...,6 exactly once, and no other digit.


5



123456, 123465, 123546, 123564, 123645, 123654, 124356, 124365, 124536, 124563, 124635, 124653, 125346, 125364, 125436, 125463, 125634, 125643, 126345, 126354, 126435, 126453, 126534, 126543, 132456, 132465, 132546, 132564, 132645, 132654
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This finite sequence contains 6!=720 terms.
This is a subsequence of A030299, consisting of elements A030299[154]...A030299[873].
If individual digits are be split up into separate terms, we get a subsequence of A030298.
It would be interesting to conceive simple and/or efficient functions which yield (a) the nth term of this sequence: f(n)=a(n), (b) for a given term, the subsequent one: f(a(n))=a(1+n [mod 6! ]).
The expression a(n+6)a(n) takes only 18 different values, for n=1...6!6.
An efficient procedure for generating the nth term of this sequence can be found at A178475.  Nathaniel Johnston, May 19 2011
From Hieronymus Fischer, Feb 13 2013: (Start)
The sum of all terms as decimal numbers is 279999720.
General formula for the sum of all terms (interpreted as decimal permutational numbers with exactly d different digits from the range 1..d<10): sum = (d+1)!*(10^d1)/18.
If the terms are interpreted as base7 numbers the sum is 49412160.
General formula for the sum of all terms of the corresponding sequence of basep permutational numbers (numbers with exactly p1 different digits excluding the zero digit): sum = (p2)!*(p^pp)/2. (End)


LINKS

Nathaniel Johnston, Table of n, a(n) for n = 1..720 (full sequence)


FORMULA

a(n) + a(6!+1n) = 777777.
floor( a(n) / 10^5 ) = ceil( n / 5! ).
a(n)=A030299(n+153).
a(n)==3 (mod 9).
a(n)=3+9*A178486(n).


MATHEMATICA

Take[FromDigits/@Permutations[Range[6]], 40] (* Harvey P. Dale, Jun 05 2012 *)


PROG

(PARI) v=vector(6, i, 10^(i1))~; A178476=vecsort(vector(6!, i, numtoperm(6, i)*v));
is_A178476(x)= { vecsort(Vec(Str(x)))==Vec("123456") }
forstep( m=123456, 654321, 9, is_A178476(m) & print1(m", "))


CROSSREFS

Cf. A030298, A030299, A055089, A060117.
Sequence in context: A254017 A254024 A254891 * A104973 A077301 A209734
Adjacent sequences: A178473 A178474 A178475 * A178477 A178478 A178479


KEYWORD

fini,full,easy,nonn,base


AUTHOR

M. F. Hasler, May 28 2010


STATUS

approved



