OFFSET
1,2
COMMENTS
Every positive integer occurs exactly once in this sequence, but depending on its largest prime factor, it may appear quite late with respect to larger numbers. E.g. prime(4)=7=a(65) appears after a(4^3)=27000=(2*3*5)^3, prime(5)=11=a(626) appears after a(5^4)=(2*3*5*7)^4=1944810000.
First A000169(n) terms are the divisors of A181555(n), and a(A000169(n))=A181555(n). [From Matthew Vandermast, Oct 31 2010]
EXAMPLE
n=0, n=1 and n=2 give a(1)=1 (empty product), a(2)=2=prime(1)^1,
and a(3..9) = 3, 4, 6, 9, 12, 18, 36: numbers 2^a 3^b with a,b <= 2.
n=3 gives a(10..64) = 5, 8, 10, 12, 15, 18...: numbers 2^a 3^b 5^c not occurring earlier, with a,b,c <= 3.
PROG
(PARI) { s=[]; for( L=0, 3, a=[]; forvec( v=vector(L, i, [0, L]), setsearch( s, t=prod( j=1, L, prime(j)^v[L-j+1] )) & next; s=setunion(s, Set(t)); a=concat(a, t)); apply(x->print1(x", "), vecsort(a))) }
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 31 2010
STATUS
approved