login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138736
Inverse binomial transform of A138737.
2
1, 1, 4, 36, 368, 5200, 90432, 1884736, 45817088, 1273874688, 39891461120, 1389816423424, 53334303584256, 2235679577657344, 101651458028158976, 4983219643056537600, 262026143585449607168, 14711289584591513387008
OFFSET
0,3
COMMENTS
The n-th term of the n-th inverse binomial transform of A138737 equals (n+1)^(n-1) for n>=0.
Related to LambertW(-x)/(-x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.
LINKS
FORMULA
O.g.f. satisfies: [x^n] A( x/(1+(n-1)*x) )/(1+(n-1)*x) = (n+1)^(n-1) for n>=0.
E.g.f. satisfies: [x^n] A(x)*exp(-(n-1)*x) = (n+1)^(n-1)/n! for n>=0.
a(n) ~ (1 + LambertW(exp(-1)))^(3/2)*n^(n-1) / (exp(n-2)*LambertW(exp(-1))^(n-1)). - Vaclav Kotesovec, Oct 30 2017
PROG
(PARI) {a(n)=local(A=[1]); for(k=1, n, A=concat(A, 0); A[k+1]=(k+1)^(k-1)-Vec(subst(Ser(A), x, x/(1+(k-1)*x+x*O(x^k)))/(1+(k-1)*x))[k+1]); A[n+1]}
CROSSREFS
Cf. A138737.
Sequence in context: A168595 A163455 A371772 * A372461 A379022 A266093
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 05 2008
STATUS
approved