login
A138736
Inverse binomial transform of A138737.
2
1, 1, 4, 36, 368, 5200, 90432, 1884736, 45817088, 1273874688, 39891461120, 1389816423424, 53334303584256, 2235679577657344, 101651458028158976, 4983219643056537600, 262026143585449607168, 14711289584591513387008
OFFSET
0,3
COMMENTS
The n-th term of the n-th inverse binomial transform of A138737 equals (n+1)^(n-1) for n>=0.
Related to LambertW(-x)/(-x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.
LINKS
FORMULA
O.g.f. satisfies: [x^n] A( x/(1+(n-1)*x) )/(1+(n-1)*x) = (n+1)^(n-1) for n>=0.
E.g.f. satisfies: [x^n] A(x)*exp(-(n-1)*x) = (n+1)^(n-1)/n! for n>=0.
a(n) ~ (1 + LambertW(exp(-1)))^(3/2)*n^(n-1) / (exp(n-2)*LambertW(exp(-1))^(n-1)). - Vaclav Kotesovec, Oct 30 2017
PROG
(PARI) {a(n)=local(A=[1]); for(k=1, n, A=concat(A, 0); A[k+1]=(k+1)^(k-1)-Vec(subst(Ser(A), x, x/(1+(k-1)*x+x*O(x^k)))/(1+(k-1)*x))[k+1]); A[n+1]}
CROSSREFS
Cf. A138737.
Sequence in context: A168595 A163455 A371772 * A372461 A266093 A198638
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 05 2008
STATUS
approved