login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138735
Primes p1 such that p1^3+p2^2=pp are average of twin primes. p1 and p2 consecutive primes, p1 < p2.
1
23, 2069, 2351, 3371, 3719, 4007, 4091, 5231, 5987, 7823, 15551, 15791, 16301, 17117, 18521, 20129, 22031, 23063, 25253, 26267, 28001, 28283, 33791, 39461, 41621, 42179, 42923, 45119, 48527, 48821, 49121, 50411, 52691, 54623, 57947, 58889, 60869, 62753, 64373, 71129, 71429, 71711, 72101
OFFSET
1,1
LINKS
MAPLE
p:= 1: q:= 2:
res:= NULL: count:= 0:
while count < 100 do
p:= q; q:= nextprime(p);
m:= p^3 + q^2;
if isprime(m-1) and isprime(m+1) then
count:= count+1; res:= res, p;
fi
od:
res; # Robert Israel, Apr 02 2018
MATHEMATICA
a={}; Do[p1=Prime[n]; p2=Prime[n+1]; pp=p1^3+p2^2; If[PrimeQ[pp-1]&&PrimeQ[pp+1], AppendTo[a, p1]], {n, 16^3}]; Print[a];
CROSSREFS
Sequence in context: A132395 A064016 A263462 * A220653 A281787 A132937
KEYWORD
nonn
AUTHOR
STATUS
approved