login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138734
a(n) = n-th term of the (n+1)-th inverse binomial transform of A138737 for n>=0.
5
1, 0, 4, 0, 176, 0, 24192, 0, 6966528, 0, 3459768320, 0, 2642804895744, 0, 2880385956446208, 0, 4248075487709560832, 0, 8150896954121845211136, 0, 19738484719911211593891840, 0, 58891248341123034677673721856, 0
OFFSET
0,3
COMMENTS
The n-th term of the n-th inverse binomial transform of A138737 = (n+1)^(n-1) for n>=0.
LINKS
FORMULA
From Paul D. Hanna, Apr 20 2011: (Start)
a(n) = Sum_{k=0..n} (-1)^k*C(n,k) * (k+1)^(k-1) * (n-k+1)^(n-k-1).
E.g.f.: -LambertW(x)*LambertW(-x)/x^2.
E.g.f.: exp( Sum_{n>=1} 2*(2n)^(2n-1) * x^(2n)/(2n)! ). (End)
Let Chw(x) = Sum_{n>=0} (2*n+1)^(2*n-1) * x^(2*n)/(2*n)!
and Shw(x) = Sum_{n>=0} (2*n+2)^(2*n) * x^(2*n+1)/(2*n+1)!
then e.g.f. A(x) = Chw(x)^2 - Shw(x)^2. - Paul D. Hanna, Aug 22 2012
If n is even, a(n) ~ 2*exp(2) * LambertW(exp(-1)) * n^(n-1). - Vaclav Kotesovec, Oct 08 2013
EXAMPLE
E.g.f.: A(x) = 1 + 4*x^2/2! + 176*x^4/4! + 24192*x^6/6! + 6966528*x^8/8! +...
MATHEMATICA
CoefficientList[Series[-LambertW[x]*LambertW[-x]/x^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)
PROG
(PARI) {a(n)=local(A=[1]); for(k=1, n, A=concat(A, 0); A[k+1]=(k+1)^(k-1)-polcoeff(subst(Ser(A), x, x/(1+k*x+x*O(x^k)))/(1+k*x), k)); polcoeff(subst(Ser(A), x, x/(1+(n+1)*x+x*O(x^n)))/(1+(n+1)*x), n)}
(PARI) {a(n)=sum(k=0, n, (-1)^k*binomial(n, k)*(k+1)^(k-1)*(n-k+1)^(n-k-1))}
(PARI) {a(n)=local(LW=sum(m=1, n+1, m^(m-1)*x^m/m!)+x^2*O(x^n)); n!*polcoeff(-LW*subst(LW, x, -x)/x^2, n)}
(PARI) {a(n)=n!*polcoeff(exp(sum(m=1, n, 2*(2*m)^(2*m-1)*x^(2*m)/(2*m)!)+x*O(x^n)), n)}
(PARI) x='x+O('x^50); Vec(serlaplace(-lambertw(x)*lambertw(-x)/x^2)) \\ G. C. Greubel, Nov 15 2017
CROSSREFS
Sequence in context: A267441 A264883 A298447 * A265596 A119010 A255018
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 05 2008
STATUS
approved