Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Oct 30 2017 09:07:01
%S 1,1,4,36,368,5200,90432,1884736,45817088,1273874688,39891461120,
%T 1389816423424,53334303584256,2235679577657344,101651458028158976,
%U 4983219643056537600,262026143585449607168,14711289584591513387008
%N Inverse binomial transform of A138737.
%C The n-th term of the n-th inverse binomial transform of A138737 equals (n+1)^(n-1) for n>=0.
%C Related to LambertW(-x)/(-x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.
%H Vaclav Kotesovec, <a href="/A138736/b138736.txt">Table of n, a(n) for n = 0..300</a>
%F O.g.f. satisfies: [x^n] A( x/(1+(n-1)*x) )/(1+(n-1)*x) = (n+1)^(n-1) for n>=0.
%F E.g.f. satisfies: [x^n] A(x)*exp(-(n-1)*x) = (n+1)^(n-1)/n! for n>=0.
%F a(n) ~ (1 + LambertW(exp(-1)))^(3/2)*n^(n-1) / (exp(n-2)*LambertW(exp(-1))^(n-1)). - _Vaclav Kotesovec_, Oct 30 2017
%o (PARI) {a(n)=local(A=[1]);for(k=1,n,A=concat(A,0); A[k+1]=(k+1)^(k-1)-Vec(subst(Ser(A),x,x/(1+(k-1)*x+x*O(x^k)))/(1+(k-1)*x))[k+1]);A[n+1]}
%Y Cf. A138737.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Apr 05 2008