login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: exp(Sum_{k>=1} (k-1)^2*x^k).
2

%I #25 Jul 31 2021 07:19:37

%S 1,0,2,24,228,2400,30360,453600,7702800,144910080,2981089440,

%T 66561264000,1603358729280,41434803970560,1142808612865920,

%U 33485770103385600,1038238875100627200,33945895488708403200,1166858228814204326400,42055660151648798054400

%N E.g.f.: exp(Sum_{k>=1} (k-1)^2*x^k).

%H Seiichi Manyama, <a href="/A288270/b288270.txt">Table of n, a(n) for n = 0..421</a>

%F a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} (k-1)^2*k*a(n-k)/(n-k)! for n > 0.

%F E.g.f.: exp(x^2*(1 + x)/(1 - x)^3). - _Ilya Gutkovskiy_, Jul 27 2020

%F a(n) ~ 2^(-7/8) * 3^(1/8) * n^(n - 1/8) / exp(n - 2^(9/4)*n^(3/4)/3^(3/4) + sqrt(2*n/3) - 2^(3/4)*n^(1/4)/3^(5/4) + 13/54). - _Vaclav Kotesovec_, Jul 31 2021

%o (PARI) {a(n) = n!*polcoeff(exp(sum(k=1, n, (k-1)^2*x^k)+x*O(x^n)), n)}

%Y E.g.f.: exp(Sum_{k>=1} (k-1)^m*x^k): A000262 (m=0), A052887 (m=1), this sequence (m=2), A290690 (m=3).

%Y Cf. A255807.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Oct 20 2017