The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119802 a(1) = 1. For m >= 0 and 1 <= k <= 2^m, a(2^m +k) = number of earlier terms of the sequence which equal a(k). 2

%I

%S 1,1,2,2,2,2,4,4,2,2,6,6,6,6,2,2,2,2,10,10,10,10,2,2,12,12,4,4,4,4,12,

%T 12,2,2,14,14,14,14,6,6,14,14,6,7,7,7,14,14,14,14,4,4,4,4,14,14,4,4,

%U 12,12,12,12,8,8,2,2,16,16,16,16,12,12,16,16,7,7,7,7,16,16,16,16,4,4,4,4

%N a(1) = 1. For m >= 0 and 1 <= k <= 2^m, a(2^m +k) = number of earlier terms of the sequence which equal a(k).

%e 8 = 2^2 + 4; so for a(8) we want the number of terms among terms a(1), a(2),... a(7) which equal a(4) = 2. So a(8) = 4.

%o (PARI) A119802(mmax)= { local(a,ncopr); a=[1]; for(m=0,mmax, for(k=1,2^m, ncopr=0; for(i=1,2^m+k-1, if( a[i]==a[k], ncopr++; ); ); a=concat(a,ncopr); ); ); return(a); } { print(A119802(6)); } - _R. J. Mathar_, May 30 2006

%Y Cf. A119803.

%K easy,nonn

%O 1,3

%A _Leroy Quet_, May 24 2006

%E More terms from _R. J. Mathar_, May 30 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 8 08:54 EDT 2020. Contains 333313 sequences. (Running on oeis4.)