login
A111960
Renewal array for central trinomial numbers A002426.
4
1, 1, 1, 3, 2, 1, 7, 7, 3, 1, 19, 20, 12, 4, 1, 51, 61, 40, 18, 5, 1, 141, 182, 135, 68, 25, 6, 1, 393, 547, 441, 251, 105, 33, 7, 1, 1107, 1640, 1428, 888, 420, 152, 42, 8, 1, 3139, 4921, 4572, 3076, 1596, 654, 210, 52, 9, 1, 8953, 14762, 14535, 10456, 5880, 2652, 966, 280, 63, 10, 1
OFFSET
0,4
COMMENTS
Also the convolution triangle of A002426. - Peter Luschny, Oct 06 2022
FORMULA
Factors as (1/(1-x), x/(1-x))*(1/sqrt(1-4x^2), x/sqrt(1-4x^2)).
From Paul Barry, May 12 2009: (Start)
Equals ((1-x^2)/(1+x+x^2),x/(1+x+x^2))^{-1}*(1,x/(1-x^2))=A094531*(1,x/(1-x^2)).
Riordan array (1/sqrt(1-2x-3x^2), x/sqrt(1-2x-3x^2));
T(n,k) = Sum_{j=0..n} C(n,j)*C((j-1)/2,(j-k)/2)*2^(j-k)*(1+(-1)^(j-k))/2.
G.f.: 1/(1-xy-x-2x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-... (continued fraction). (End)
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
3, 2, 1;
7, 7, 3, 1;
19, 20, 12, 4, 1;
51, 61, 40, 18, 5, 1;
...
From Paul Barry, May 12 2009: (Start)
Production matrix is
1, 1,
2, 1, 1,
0, 2, 1, 1,
-2, 0, 2, 1, 1,
0, -2, 0, 2, 1, 1,
4, 0, -2, 0, 2, 1, 1. (End)
MAPLE
# Uses function PMatrix from A357368. Adds a row and column above and to the left.
PMatrix(10, n -> A002426(n - 1)); # Peter Luschny, Oct 06 2022
CROSSREFS
Row sums are A111961.
Diagonal sums are A111962.
Inverse is A111963.
Factors as A007318*A111959.
Column k=0 gives A002426.
Cf. A026325.
Sequence in context: A094531 A274293 A161009 * A130462 A373506 A059380
KEYWORD
nonn,tabl,easy
AUTHOR
Paul Barry, Aug 23 2005
STATUS
approved