login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026325
Number of paths in the plane x >= 0 and y >= -2, from (0,0) to (n,0), and consisting of steps U = (1,1), D = (1,-1) and H = (1,0).
4
1, 1, 3, 7, 19, 51, 140, 386, 1071, 2983, 8338, 23376, 65715, 185199, 523134, 1480872, 4200411, 11936619, 33981063, 96897759, 276739029, 791532973, 2267119660, 6502108902, 18671460905, 53680763201, 154507444731, 445190930863, 1284064525987
OFFSET
0,3
COMMENTS
Previous name: Number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 2. Also T(n,n), where T is the array in A026323.
Number of paths in the plane x >= 0 and y >= -2, from (0,0) to (n,0), and consisting of steps U = (1,1), D = (1,-1) and H = (1,0). For example, for n=3, we have the 7 paths: HHH, UDH, HUD, UHD, HDU, DUH, DHU. - José Luis Ramírez Ramírez, Apr 20 2015
LINKS
FORMULA
G.f: 1/(1 - x - x^2*(M(x) + 1/(1 - x - x^2/(1 - x)))), where M(x) is g.f. of Motzkin paths A001006. - José Luis Ramírez Ramírez, Apr 20 2015
a(n) ~ 3^(n + 7/2)/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
(n + 6)*a(n) + (-4*n - 15)*a(n-1) + (n - 3)*a(n-2) + 6*n*a(n-3) = 0. - R. J. Mathar, Jul 23 2017
MAPLE
gf := sqrt(4 - 8*x - 12*x^2)*(1/x^5 - 1/x^4 - 1/(4*x^6)):
ser := series(gf, x, 36): seq(coeff(ser, x, n), n=0..28);
A026325 := proc(n) option remember; ifelse(n < 3, [1, 1, 3][n + 1],
((4*n+15)*A026325(n-1) + (3-n)*A026325(n-2) - 6*n*A026325(n-3))/(n+6)) end:
seq(A026325(n), n = 0..28); # Peter Luschny, Oct 06 2022
MATHEMATICA
CoefficientList[Series[1/(1 - x - x^2 ((1 - x - (1 - 2 x - 3 x^2)^(1/2))/(2 x^2) + 1/(1 - x - x^2 / (1 - x)))), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 21 2015 *)
PROG
(PARI) x='x+O('x^50); Vec(1/(1 - x - x^2*((1 - x - (1 - 2*x - 3*x^2)^(1/2))/(2*x^2) + 1/(1 - x - x^2/(1 - x))))) \\ G. C. Greubel, Feb 15 2017
CROSSREFS
Sequence in context: A078059 A018031 A052948 * A002426 A011769 A087432
KEYWORD
nonn
EXTENSIONS
New name using a comment of José Luis Ramírez Ramírez by Peter Luschny, Oct 06 2022
STATUS
approved